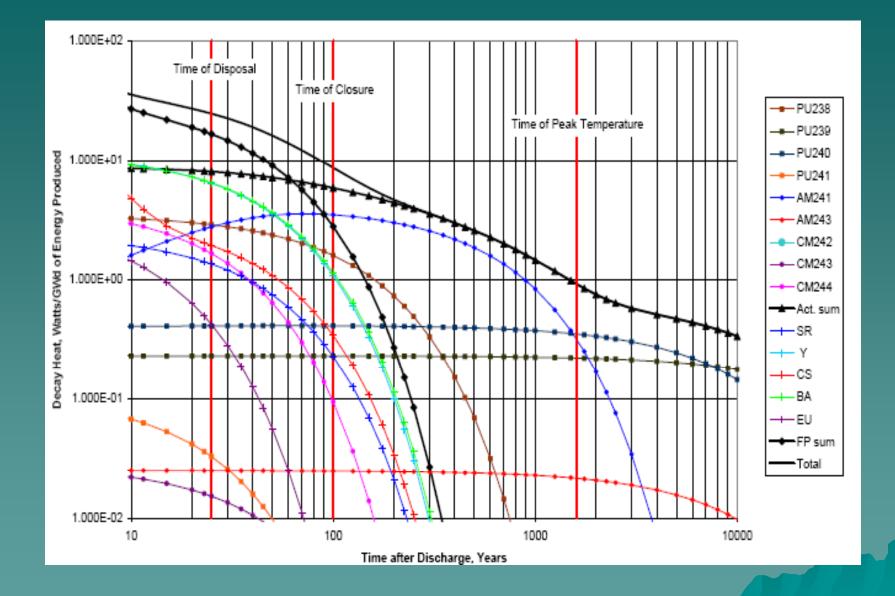
COMPLEXATION REACTIONS IN NUCLEAR SEPARATIONS

A PRESENTATION AT THE

SHORT COURSE ON INTRODUCTION TO NUCLEAR CHEMISTRY AND FUEL CYCLE SEPARATIONS

BY R. G. WYMER


DECEMBER 16-18, 2008

Tc: (⁹⁹Tc) U: (²³²U, ²³³U, ²³⁴U, ²³⁵U, ²³⁸U) Np: (²³⁷Np) Pu: (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu) Am: (²⁴¹Am) Cm: (²⁴²Cm, ²⁴⁴Cm)

SOME ELEMENTS AND ISOTOPES OF SPECIAL CONCERN IN FUEL CYCLE SEPARATIONS

SOME REASONS FOR IMPORTANCE IN SEPARATIONS

U: FOUNDATION OF NUCLEAR ENERGY ⁹⁹Tc: IMPORTANT DOSE LIMITING ISOTOPE IN **REPOSITORY EXPOSURE PATH** ²³⁷Np: IMPORTANT DOSE LIMITING ISOTOPE IN REPOSITORY EXPOSURE PATH ²³⁸Pu: HEAT PRODUCER IN REPOSITORY; SPACE ENERGY SOURCE ²³⁹Pu: FISSILE; IMPORTANT LONG TERM DOSE LIMITING ISOTOPE IN REPOSITORY EXPOSURE PATH: HEAT PRODUCER IN REPOSITORY ²⁴⁰Pu: HEAT PRODUCER IN REPOSITORY ²⁴¹Am: IMPORTANT HEAT PRODUCER IN REPOSITORY ²⁴⁴Cm: HEAT PRODUCER IN REPOSITORY

IMPORTANT CHEMICAL ELEMENTS AND COMMON VALENCE STATES

- Tc (IV, VII): ENVIRONMENTALLY MOBILE AS PERTECHNETATE ION (TcO₄⁻)
- U (III, IV, VI): ENVIRONMENTALLY MOBILE; EXTRACTABLE; UBIQUITOUS
- Np (III, IV, V, VI): ENVIRONMENTALLY MOBILE AS NpO2⁻
- Pu (III, IV, V, VI): ENVIRONMENTALLY MOBILE AS +4 COLLOID POLYMER; EXTRACTABLE; CO-EXISTING VALENCE STATES
- ♦ Am (III, / V, V, V/): ALPHA HAZARD
- Cm (III): ALPHA HAZARD

TECHNETIUM

- ◆ TECHNETIUM DOES NOT OCCUR IN NATURE
- ♦ RHENIUM IS OFTEN USED AS ITS SURROGATE
- Tc (VII) OCCURS AS TcO₄⁻ (PERTECHNETATE ANION)
- NITRIC ACID AND HYDROGEN PEROXIDE OXIDIZE Tc TO TcO₄-, AN OXIDIZING ANION THAT IS VERY MOBILE IN THE ENVIRONMENT
- TcO₄⁻ FORMS AN EXTRACTABLE COMPLEX WITH Zr(IV) THAT REACTS WITH UO₂²⁺ IN TBP TO FORM A COMPLEX (UO₂NO₃TcO₄·2TBP) THAT IS SOLUBLE IN TBP
- Tc₂O₇ IS VOLATILE AND IS READILY FORMED BY EVAPORATING ACIDIC SOLUTIONS OF TcO₄⁻
- Tc(IV) COMPOUNDS ARE MUCH LESS MOBILE THAN TcO₄⁻ IN THE ENVIRONMENT
- Tc(IV) SORBS ON UO₂

URANIUM

(THE URANIUM LITERATURE IS HUGE AND ONLY A FRACTION OF IT IS ADDRESSED HERE)

- U AQUEOUS CHEMICAL SPECIES
- ♦ U³⁺, U⁴⁺, UO₂⁺, UO₂²⁺
- U³⁺ IS THERMODYNAMICALLY UNSTABLE IN AQUEOUS SOLUTIONS BUT IS KINETICALLY STABLE IN THE ABSENCE OF CATALYSTS
- U⁴⁺ FORMS COMPLEXES WITH Cl⁻, CNS⁻, SO₄²⁻, F⁻, et al AND HYDROLYZES EASILY
- UO₂⁺ IS UNSTABLE AND DISPROPORTIONATES INTO U³⁺ AND UO₂²⁺
- UO2²⁺ SALTS IN ACIDIC SOLUTIONS ARE OFTEN STABLE UP 300°C

STABLE U AQUEOUS CHEMICAL SPECIES U³⁺, U⁴⁺, UO₂⁺, UO₂²⁺ (CONTINUED)

 UO2²⁺ FORMS COMPLEXES WITH MANY ANIONS (e.g., Cl⁻, SO4²⁻, F⁻, NO3⁻, et al)

- UO2²⁺ FORMS DIURANATES (e.g., Na2U207) WITH AMMONIUM AND SODIUM HYDROXIDES
- UO2²⁺ PRECIPITATES THE PEROXIDE UO4⁻2H20 FROM MILDLY ACIDIC SOLUTIONS
- UO2²⁺ FORMS AN EXTRAORDINARILY STRONG AND USEFUL [UO2(CO3)3]⁴⁻ COMPLEX
- UO2²⁺ FORMS A USEFUL AND UNUSUAL ACETATE COMPLEX: NaZn[UO2(C2H3O2)3]3
- UO2²⁺ FORMS A NITRATE COMPLEX THAT EXTRACTS INTO TBP FROM CONCENTRATED NO3⁻ SOLUTIONS AS THE UO2(NO3)2⁻2TBP COMPLEX

NEPTUNIUM

STABLE Np AQUEOUS CHEMICAL SPECIES
♦ Np³⁺, Np⁴⁺, NpO₂⁺, NpO₂²⁺

Np³⁺ BEHAVES LIKE RARE EARTHS: SLIGHT COMPLEXATION; COMPLETE PRECIPITATION BY OH⁻, PO₄³⁺ AND F⁻

Np⁴⁺ BEHAVES LIKE Pu⁴⁺: HYDROLYZES AND FORMS STABLE SO₄⁻², F⁻ AND C₂O₄⁻² COMPLEXES

NpO₂⁺ IS NOT EASILY COMPLEXED, PRECIPITATED, OR SOLVENT EXTRACTED

NpO₂²⁺ BEHAVES LIKE UO₂²⁺ AND PuO₂²⁺; FORMS SIMILAR COMPLEXES AND IS EXTRACTED BY ORGANIC SOLVENTS

PLUTONIUM

STABLE Pu AQUEOUS CHEMICAL SPECIES
◆ Pu³⁺, Pu⁴⁺, PuO₂⁺, PuO₂²⁺

Pu³⁺ IS MORE STABLE THAN U³⁺ OR Np³⁺; STABLE IN ACIDIC SOLUTIONS; FLUORIDES AND HYDROXIDES ARE INSOLUBLE (LIKE RARE EARTHS); PRECIPITATED BY OXALATE AND CARBONATE; NOT EASILY SOLVENT EXTRACTED

Pu⁴⁺ PREDOMINATES IN ACIDIC SOLUTIONS BUT IS EASILY OXIDIZED OR REDUCED; APPRECIABLY COMPLEXED BY NITRATE, PEROXIDE, FLUORIDE AND CHLORIDE; ANIONIC COMPLEXES FORM AT HIGH CONCENTRATIONS OF NITRATE AND CHLORIDE; PRECIPITATED BY OXLALATE AND PEROXIDE; "IRREVERSIBLY" FORMS *PLUTONIUM POLYMER*; EXTRACTS INTO TBP AS Pu(NO₃)₄·2TBP

PLUTONIUM STABLE PU AQUEOUS CHEMICAL SPECIES PU³⁺, PU⁴⁺, PUO₂⁺, PUO₂²⁺ (CONTINUED)

PuO₂⁺ IS LESS COMPLEXED, LESS HYDROLYZED, LESS EASILY EXTRACTED, AND LESS EASILY PRECIPITATED THAN OTHER OXIDATION STATES OF Pu

PuO₂²⁺ IS EASILY EXTRACTED BY ORGANIC SOLVENTS WITH EXCESS NO₃⁻; RESEMBLES UO₂²⁺ IN ITS HYDROLYSIS AND COMPLEX FORMATION; FORMS COMPLEXES WITH SULFATES AND CARBONATES, AMONG OTHERS

AMERICIUM

STABLE AM AQUEOUS CHEMICAL SPECIES

- ♦ Am³⁺, Am⁴⁺, Am⁵⁺, Am⁶⁺
- Am³⁺ IS THE ONLY OXIDATION STATE STABLE UNDER "ORDINARY" CONDITIONS
- Am(III) FORMS STABLE COMPLEXES WITH Cl⁻, NO3⁻, CNS⁻, AND SiF₆²⁻ (RARE EARTHS ARE LESS PRONE TO FORM THEM)
- Am(III) FORMS A SOLUBLE CARBONATE COMPLEX [Cm(III) DOES NOT]
- Am(V) FORMS INSOLUBLE KAmO₂CO₃ (RARE EARTHS DO NOT)
- Am(VI) IS STRONGLY OXIDIZING AND DIFFICULT TO STABILIZE IN SOLUTION
- HYDROLYSIS COMPLICATES Am SOLUTION CHEMISTRY

CURIUM

STABLE Cm AQUEOUS CHEMICAL SPECIES

- Cm3+ IS THE ONLY OXIDATION STATE FOUND NORMALLY IN SOLUTION
- Cm(III) FLUORIDE, OXALATE, PHOSPHATE, IODATE, AND HYDROXIDE ARE INSOLUBLE
- Cm(III) IS VERY STABLE TOWARD OXIDATION
- Cm CHEMISTRY STUDIES ARE HAMPERED BY RADIOLYTIC AND HEATING EFFECTS
- CmF₃ CAN BE PRECIPITATED FROM SOLUTION
- Cm(III) FORMS COMPLEXES WITH a-HYDROXY-ISOBUTYRATE AND CNS⁻ THAT CAN BE SEPARATED FROM Am, OTHER TRU ELEMENTS, AND RARE EARTHS USING ION EXCHANGE ELUTION